

A SONARDYNE COMPANY

Pollution monitoring using *in situ* fluorometers

Dr John Attridge Technical Director, Chelsea Technologies Ltd

HazRunOff Workshop, Cardiff | 20/06/2019 | www.chelsea.co.uk

Contents

Brief introduction to Chelsea Technologies	3
What is fluorescence and why do we use it?	4
Typical fluorometer design	6
UV fluorescence and its applications	9
Specificity & standardization	11
Examples of using tryptophan fluorescence for bacterial contamination monitoring	15
Mitigating background interferences	23
Introducing the VLux multiparameter 'sonde' & recent field data	26

Chelsea Technologies

Business areas

Oceanographic NAD research Tactio Sensors & ocean systems Acou Acoustic simul transducers CPNI Fisheries Acou

NAD Tactical oceanography Acoustic target simulation

Acoustic ranging systems

Fresh water & coastal monitoring

Offshore pipeline leak detection

Water quality monitoring

Exhaust gas monitoring Ballast water monitoring FerryBox

- Application of sensor technology
- Process control & monitoring

Medical diagnostics

Agribusiness

What is fluorescence

And why measure it?

Excitation Emission Matrices - EEMs

Typical fluorometer design

Chelsea's range of fluorometers

- Visible
 - Algae
 - Dye tracing

- UV
 - Tryptophan
 - Aromatic Hydrocarbons (AH)
 - CDOM
 - Optical brighteners
- Multiparameter
 - AH/CDOM/Chl/Absorbance/Turbidity
 - 4λ Chl/Absorbance/Turbidity
- Active fluorescence
 - Photosynthesis analysis

Chelsea's range of fluorometers

Deployment options

Handheld data logger

Wall mounted data logger

Profiling systems

Monitoring cabinets

UV fluorescence

Chelsea has a long history in UV fluorometry

UV fluorometry

Detectable compounds

BTEX

PAH

Tryptophan

UV fluorometry

Applications

Oil & gas

Wash water

Water quality

Water industry

Bathing waters

Aviation fuel run-off

Environmental

Specificity

Aromatic compounds can have highly structured spectra

Real world samples

'cocktail' of compounds

Emission wavelength (nm)

Fluorescence standardization

Essential for fluorescence to be more widely adopted

- Quinine Sulphate: NIST-traceable, certified reference material
- Aqualog normalises spectral response for source intensity and detector sensitivity to correlate different calibration solutions
- QSU calibration provides an absolute measurement of fluorescence allowing direct comparison between different sensor configurations

Tryptophan fluorescence

What is it?

- An essential amino acid in human diet
- Main component of protein fluorescence
- Metabolic product in bacteria
 - Sewage & faecal contamination of waste waters
 - Agricultural runoff
 - Bacterial activity
- Has been shown to correlate with:
 - BOD₅
 - Bacterial cell count

WWTW outflow

Pollution source tracking

WWTW event detection

Tryptophan and CDOM deployment

WWTW event detection (cont.)

Benefits of continuous monitoring

Bacterial monitoring in groundwater

Correlation with bacterial counts

Sorensen, J.P.R., Lapworth, D.J., Marchant, B.P., et al. (2015). In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. *Water Research*, 81, 38-46.

But what are we measuring?

Tryptophan fluorescence as a function of bacterial growth

Fox B.G. et al, (2019). Microbial Processing and Production of Aquatic Fluorescent Organic Matter in a Model Freshwater System, *Water*, 11, 10; doi:10.3390/w11010010

Indicator of bacterial activity

Tryptophan fluorescence vs cell count

Figure 5. Fluorescence and bacterial enumeration data for synthetic water samples incubated at a range of temperatures over a five-day experimental period, showing; (a) Peak T fluorescence, QSU (1 QSU = 1 μ g L⁻¹ quinine sulphate); and (b) the number of living bacteria (cells mL⁻¹). Data shown is from 20 to 48-h plus a single time point at day five (120 h).

Fox B.G. et al, (2019). Microbial Processing and Production of Aquatic Fluorescent Organic Matter in a Model Freshwater System, *Water*, 11, 10; doi:10.3390/w11010010

Turbidity & 'colour' interference

Both effect must be taken into account

Turbidity & 'colour' correction

Correction algorithm development

Effect of Turbidity correction for 270 ug/l phenanthrene - corrected result is within $\pm 5\%$ from 0-1000 FNU

New approach to in situ monitoring

Electro-optics

Potential algal interference

Variants

Parameter	V-Lux (BTEX)	V-Lux (PAH)	V-Lux (Tryptophan)	V-Lux (Algae)
ВТЕХ	\checkmark			
РАН		\checkmark		
Tryptophan			\checkmark	
CDOM	\checkmark	\checkmark	\checkmark	
Chlorophyll-a & -c	\checkmark	\checkmark	\checkmark	\checkmark
Chlorophyll-b & -c				\checkmark
Phycoerythrin				\checkmark
Phycocyanin				\checkmark
Absorbance	\checkmark	\checkmark	\checkmark	\checkmark
Turbidity	\checkmark	\checkmark	\checkmark	\checkmark

Ganga tributary transect

Ganges transect

Wetlands and canals

Fluorescence

Potential algal bloom interference

Ganga transect mid-river. No obvious biological pollution source.

Ganga transect sewage outflow, 100 m bathing area.

Wetlands (WTL2)

Wetlands, 'clean' pond overflow. Treated fisheries pond with visible green colouration.

- New multi-parameter fluorometer
 - 3x fluorescence, absorbance, turbidity and temperature channels
 - Turbidity, absorbance and temperature compensation
 - Linear dynamic range extended (x20)
 - Turbidity is ISO 7027:1999(E) compliant
- Long term calibration stability
- Traceable output in relative fluorescence units (QSU)
- Internal logging, range of data output options
- Integrated biofouling protection

A SONARDYNE COMPANY

Thank you

chelsea.co.uk