

Workshop Vigo, 1st of February 2019 Lessons learnt from a medium spill in an estuary

Florence Poncet

A medium spill in an estuary (France)

The event and first measures

- Sunday 16 March 2008 in the Loire estuary (Low tide 18h 47, neap tide coeff. 39), river flow 1000m³/s
 - 16h 20 : oil reported in the river, close to the ship loading wharf
 - 16h 45 : identification of the leakage, on the pipe at 4,8 km from the loading wharf
 - o 16h 49 : the leakage is stopped
 - o 17h : The company emergency plan and crisis unit are activated
 - o Mothy model was run
 - o FOST and Cedre immediately mobilised
- Monday 17 March, at first daylight, helicopter surveys by oil company, gendarmerie, civil security
 - to get an overview of oiling conditions and extension
 - oil slicks and sheen are spread on the water from 10 km upstream to the external part of the estuary at sea
 - Some oil already ashore, mostly on the South bank due to wind from the North
 - Crisis unit at the Prefecture is activated

The spill

- Vol: 500 tons in the site, ~ 200 t in the estuary
- Product : IFO 380 (intermediate fuel oil)
- **Density** : 995 kg/m³
- Viscosity : 25 000 cSt at 10 °C
- Viscosity evolution after 10 days :

107 000 cSt (emulsification : 36,7 % water)

Available model for oil slick drift forecast at the mouth of the estuary and at sea

MOTHY model from Météo France : not designed for estuaries

Attention : document technique de prévision de dérive d'hydrocarbure, réalisé à partir d'un seul point choisi dans un ensemble complexe de nappes (observées ou non). Caution: Technical support for oil drift forecast from a single point out of a complex set of slicks (observed or not).

Aerial observations on 18 March

Available model for oil slick drift forecast at the mouth of the estuary and at sea

MOTHY model efficient for drift forcast at sea

Attention : document technique de prévision de dérive d'hydrocarbure, réalisé à partir d'un seul point choisi dans un ensemble complexe de nappes (observées ou non). Caution: Technical support for oil drift forecast from a single point out of a complex set of slicks (observed or not).

MEE1

Available model for oil slick drift forecast in the estuary

- Hydrodynamic model : 3/4 days to run the model and get results
- In the Contingency Plan of the plant trajectory simulations were prepared in advance
- Currents were calculated for :
 - one tide amplitude
 - one river flow
 - 2 wind conditions
- Model results compared to 3 floaters trajectories dropped in 3 different locations in the estuary, every 2 hours, during a complete tide cycle.
- Four scenario were chosen (48 maps)
- A synthetic map was elaborated which shows the extreme points reached by the oil in the estuary (upstream and downstream)

Conditions de lâcher du flotteur (déversement) : Coefficient de marée 60, Q module = 850 m3/s (sans référence à la pleine mer)

Heure du lâcher de flotteur (déversement) : T0

- Lieu de lâcher de flotteur (déversement)
- Points extrêmes de la dérive du flotteur entre T0 et T0+6h
- Points extrêmes de la dérive du flotteur entre T0+6h et T0+12h
- Points extrêmes de la dérive du flotteur entre T0+12h et T0+18h
- Points extrêmes de la dérive du flotteur entre T0+18h et T0+24h

D'après l'étude n° 2 74 0202 de SOGREAH 'Modélisation numérique des déplacements de substances flottantes en Loire estuarienne'

Lâcher du flotteur : DONGES (appontement P5)

Figure A 4

- _____
- Points extrêmes de la dérive du flotteur entre T0 et T0+6h
- Points extrêmes de la dérive du flotteur entre T0+6h et T0+12h
- Points extrêmes de la dérive du flotteur entre T0+12h et T0+18h
- Points extrêmes de la dérive du flotteur entre T0+18h et T0+24h

MEETI

PROJECT

Map and pictures prepared for authorities from helicopter flight observations Monday morning the 17th of March 11h 30 / 12h 30 HT – 3h to HT -2h (Coeff 44, Flow 1000 m³/s)

PROJECT

Map and pictures prepared for authorities from helicopter flight observations Monday morning the 17th of March 11h 30 / 12h 30 HT – 3h to HT -2h (Coeff 44, Flow 1000 m³/s)

First days oiling conditions

- Due to neap tide and flow :
- oil remains on water and
- on low part of the banks

Second phase of contamination

On the fourth day after the spill :

- Increase in tide (coeff 94) and flow (1300m³)
- Changes of direction and strengthening in wind
- Currents 1, 5 to 3 knots

As a result :

- At high tide, sudden spillover the banks, large extension of contamination
- Oil contaminates new areas,
- Oil penetrates into small creeks and overflows spreading into meadows and wetlands

MEE

6 days after the spill the contamination reaches almost its maximum extension in width and length (32 km)

Pastures contamination and monitoring

Prefecture order : grazing ban extension and level of contamination in the flood plain (nearly 4 000 ha)

Operations: protection by boom deployment :

- Try to protect sensitive areas and strategic ressources in the estuary
- Anchoring difficulties
- Strong currents
 - ➤As expected, limited efficiency

Water intake of the power station

Anchorage in a meadow

Funded by European Union Civil Protection and Humanitarian Aid

Operations : recovery of floating oil

Limited operations on the river :

- OSRV Argonaute (with Thomsea trawInet)
- Mobilisation of fishing boats
- Moored Thomsea trawl nets
- Few skimming barges suited for shallow waters, none in the area
- Most floating oil was in very shallow waters close to the banks
- Low quantity recovered

As a result : 3 months of cleanup operations, 25 000 man day

Lessons learnt and future developments

- Model improvement and faster transmission of forecast results (Hazrunoff project and French authorities);
- New tools as UAV (test in the frame of Hazrunoff project);
- Better adapted equipment for recovery in fast currents : since 2013 Cedre, partners and manufacturers organise tests of new equipment in the Loire estuary;
- Prototype of hovercraft for operations on mudflats and in shallow waters developped by Italian partners in the framework of a European project.

Funded by European Union Civil Protection and Humanitarian Aid