

Integration of sensing and modelling technologies for early detection and follow-up of hazmat and flood hazards in transitional and coastal waters

HAZRUNOFF AT A GLANCE

DG ECHO - Directorate-General for European Civil Protection and Humanitarian Aid Operations

Start date: End date: January 2018 May 2020

HazRunoff Goal:

To increase preparedness and response capacity on floods and pollutant hazards in rivers, transitional and coastal waters, through the development of a situational awareness and emergency response framework and associated tools, capable of supporting civil protection units and water pollution authorities.

PARTNERS AND ADVISORY BOARD

Instituto Superior Técnico, IST (*Coordinator*)
Bentley Systems Portugal
Câmara Municipal de Loures
Portuguese National Authority for Civil Protection

•Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux, CEDRE •GIP Loire estuaire

<u>Contact</u>:

-Project coordinator: Ramiro Neves

-Technical coordinator: Lígia Pinto

Project contact e-mail:

hazrunoff@maretec.org

Centro Tecnológico del Mar - Fundación CETMAR
Augas de Galicia

- •EOMAP GMBH & CO KG
- •BfR -German Federal Institute for Risk Assessment

Public Health England (PHE)UK Maritime Coast Guard Agency

OBJECTIVES & SCOPE

HazRunoff aims to fill the gaps around:

- knowledge & preparedness,
- early warning & detection,
- early response & follow-up,

on flooding and hazmat contamination in

Inland,

Transitional and coastal waters

Including urban areas.

Natural hazards are mostly associated to Extreme meteorological events!

HazRunoff must :

Forecast meteorology, storm surge, river discharge, to deliver alerts and to plan crisis management.

Collect actual data from in situ, drones and satellites remote sensing, to detect and follow the crisis

Communicate actual data before and during the crisis using web services for warning and actual management.

Simulation scenarios for training and awareness.

HazRunoff pilot areas

http://www.hazrunoff.eu/case-studies/

Spain – Ulla and Sar Rivers \ Ría Arousa

Portugal - Tagus river \ estuary

TECNICO

UK - Severn river \ estuary

France - Loire river \ estuary

Funded by European Union Civil Protection and Humanitarian Aid

Meeti

DATA ACQUISITION AND ANALYSIS

Data is always short!! During crisis situations it can be even shorter!!! The solution is combination of data from different sources (and modelling)

From Remote Sensing: Water level, turbidity, oil slick identification and chemical spill detection;

From in-situ measurements: (automatic) River control stations and (manual) Laboratory measurements of chemicals behaviour and fate

Unmanned Aerial Vehicles (UAV): Identification and mapping of floods and water pollution

Gap analysis and assessment of sentinels and indicators: Data assessment & crossing between different sources and modelling forecasts.

Today workshop 14:45 - 15:05 Near Real-Time Satellite Data in Operational Context (ChristianBödinger, EOMAP, Germany) 15:05 - 15:25 EMODnet Physics from data to services (Antonio Novellino, ETT SpA)

SIMULATION AND FORECASTING OF FLOOD AND POLLUTANT TRANSPORT

To simulate and **integrate the water continuum from the watershed up to the estuary** to reproduce measured data and forecast the flood propagation and the pollutants distributions.

Today workshop 14:25 – 14:45 Modeling strategy and pilot cases (Lígia Pinto, IST, Portugal)

Tools for situational awareness & emergency response

Tools centralize and integrate data from observation and prediction, decision making and communication to support flood and hazmat emergency responders

USER FRIENDLY WEB-BASED TOOLS AND MOBILE INTERFACES

- Early warning system
- On-demand pollutant dispersion simulation
- Realtime dashboards for situational awareness

Today workshop 16:15 - 16:45 Awareness & Response Tools: Using digital twins on water-related hazards (Rodrigo Fernandes, Bentley Systems, Portugal)

Tools for situational awareness & emergency response

Evaluation of social media and internet systems for early incident detection, for communication with citizens and for impact assessment.

-Alerting about aquatic incidents

-Increasing public participation

Crisis communications, warning and informing message around priority pollutants. **Impact assessment** in social networks (sentiment analysis) during incident, exercise or historical incidents.

Today workshop 15:55 - 16:15 Social media analytics as an alerting tool for hazmat incidents and flood events (Andrew Kibble, Public Health England, UK)

Response planning and training

Focused on transitional waters, contributing to more efficient preparedness to floods and hazmat response.

- Risk management: Maps and tools to prioritise emergency response actions
- Improved response protocols in transitional waters: based on past incidents, on the main difficulties encountered, and on the analysis of equipment available.
- Development of training activities: To help key staff in emergency response to HNS and oil incidents, specially adapted to the conditions in transitional waters

Today workshop 15:35 - 15:55 Learning from past incidents; preparing for the future (Florence Poncet, CEDRE, France)

IMPACT OF HAZRUNOFF

THE PROJECT HAS DELIVERED A SET OF MATERIALS AND TOOLS TO HELP IMPROVE THE PROCESS OF EARLY WARNING, EARLY DETECTION, FOLLOW-UP AND RESPONSE TO FLOODS AND HAZMAT CONTAMINATION IN TRANSITIONAL WATERS. ALL OF THESE TOOLS ARE AVAILABLE ON HAZRUNOFF WEBSITE.

It is hoped that these outcomes will contribute to

INCREASED PREPAREDNESS AND KNOWLEDGE ON MULTIPLE TYPES OF FLOODS

FASTER DETECTION OF HAZMAT INCIDENTS, BOTH OIL AND CHEMICAL, IN TRANSITIONAL WATERS

2.

A MORE EFFICIENT FOLLOW-

.

INCREASED AWARENESS ON POTENTIAL MARITIME POLLUTION ORIGINATED IN INLAND AND ESTUARINE WATERS

5.

6

STRONGER AND SAFER CAPACITY FOR IDENTIFICATION AND MONITORING OF CONTAMINATED AREAS

IMPROVED CONTINGENCY PLANNING

7. 1

8.,

INCREASED AWARENESS AROUND HAZARD IDENTIFICATION AND RISK PERCEPTION

IMPROVED KNOWLEDGE OF CHEMICAL PROPERTIES AND BEHAVIOUR OF POLLUTANTS IN TRANSITIONAL WATERS

IMPROVED KNOWLEDGE AND AWARENESS AROUND MUCTIPLE HAZARDS VIA BESPOKE TRAINING MATERIALS, COURSES AND EXERCISING

